Three-Phase Circuit

• 전력계통은 대부분 교류 방식 사용.
 ⇔ 주된 이유는 장거리에 전송할 때 손실을 줄이기 위해서 매우 높은 전압을 사용해야하는데 전압을 올리고 내리는데 교류가 훨씬 쉽기 때문이다.

• 교류방식으로 일관된 운용을 할 수 있다.
 ⇔ 전동, 전동력 등을 비롯해서 현재 부하의 대부분은 교류방식으로 되어 있기 때문에 발전에서 배전까지 전 과정을 교류방식으로 통일해서 보다 합리적이고 경제적으로 운영할 수 있다.

• 다상 방식(Polyphase system)
 인접해 있는 전원의 크기와 주파수가 같고 위상이 다른 경우.

 • 대칭 n 상식 (Symmetric n phase system) : 위상이 \(\frac{2\pi}{n} \) [rad]씩 다른 경우
 • 비대칭 n 상식 (Asymmetric n phase system)

• 각 상의 임피던스 (phase impedance)
 • 평형 부하 (balanced load)
 • 불평형 부하 (unbalanced load)

⇒
 • 평형 n상 회로 (balanced n phase circuit)
 대칭 n상 전원에 평형 n상 부하를 접속한 것.
 • 불평형 n상 회로 (unbalanced n phase circuit)
[Notation]

- 전압
 \(\overrightarrow{V_{ab}} \) : 부기 b에 대한 부기 a의 전압
 부기 a: + , 부기 b: -

\[
\overrightarrow{V_{ad}} = \overrightarrow{V_{ab}} + \overrightarrow{V_{bc}} + \overrightarrow{V_{cd}}
\]
\[
= \overrightarrow{V_{ab}} + \overrightarrow{V_{bd}}
\]
\[
= \overrightarrow{V_{ad}}
\]

[Ex]

\[
\overrightarrow{V_{ab}} = \overrightarrow{V_{an}} + \overrightarrow{V_{nb}}
\]
\[
= \overrightarrow{V_{an}} - \overrightarrow{V_{bn}}
\]
\[
= 100 - 120 \angle -120^\circ = 100 \sqrt{3} \ [V]
\]

- 전류

\(\overrightarrow{I_{ab}} \) : 부기 a에서 부기 b로 직 경로(direct path)를 따라 호르는 전류
 그 이외에는 이중 점자를 사용하지 않는다.

[Ex]

\(I_{ab} \) : 전류의 경로가 명백하므로 이중점자를 사용할 수 있다.

\(I_{bc} \) : 전류의 경로가 명백하지 않으므로 이중점자를 사용할 수 없다.
• 단상 3선 방식(Single-Phase Three-wire System)

- 3개의 단자 a, b 및 n (neutral node)이 있으며, 단자 전압 \(V_{an} = V_{nb} = V_1 \)인 화로

\[
\begin{align*}
V_{an} \text{와 } V_{nb} \text{가 크기와 위상이 같기 때문에 단상 (single phase)라 한다.}
\end{align*}
\]

• 가정에 공급되는 방식은 보통 단상 3선식으로 110 [V\text{RMS}]와 220 [V\text{RMS}]의 가전기기를 동시에 쓸 수 있게 되어있다.

\[Ex\] 2개의 동일한 부하를 연결한 단상 3선회로

Let \(V_{an} = V_{nb} = V_1 \)

\[
\begin{align*}
\bar{I}_{aA} &= \frac{V_{an}}{Z_1} = \frac{V_1}{Z_1} \\
\bar{I}_{bB} &= -\frac{V_{nb}}{Z_1} = -\frac{V_1}{Z_1} \\
\Rightarrow \quad \bar{I}_{aA} &= -\bar{I}_{bB} \\
\Rightarrow \quad \bar{I}_{nN} &= - (\bar{I}_{aA} + \bar{I}_{bB}) = 0
\end{align*}
\]

\(\because \) 중성선을 중심으로 대칭인 회로에서는 중성선에 흐른 전류는 0이다.

- 중성선 nN을 중심으로 impedance가 대칭을 이루면 중성선에는 전류가 흐르지 않는다.
- 그러나 중성선을 중심으로 비대칭인 경우에는 중성선에 전류가 흐른다.
\[
\begin{bmatrix}
115 \\
0 \\
115
\end{bmatrix}
= \begin{bmatrix}
54 & -50 & -3 \\
-50 & 170 + j10 & -100 \\
-3 & -100 & 104
\end{bmatrix}
\begin{bmatrix}
\bar{I}_1 \\
\bar{I}_2 \\
\bar{I}_3
\end{bmatrix}
\]

\[\bar{I}_1 = 11.24 \angle -19.83^\circ\]
\[\bar{I}_1 = 9.39 \angle -24.47^\circ \quad [A_{\text{RMS}}]\]
\[\bar{I}_1 = 10.37 \angle -21.80^\circ\]

\[\bar{I}_{aA} = \bar{I}_1 = 11.24 \angle -19.83^\circ\]
\[\bar{I}_{bB} = -\bar{I}_3 = -10.37 \angle -21.80^\circ\]
\[\bar{I}_{aN} = \bar{I}_3 - \bar{I}_1 = 10.37 \angle -21.80^\circ - 11.24 \angle -19.83^\circ\]
\[= (9.63 - j13.85) - (10.58 - j3.81)\]
\[= -0.95 - j0.04 = 0.95 \angle -180^\circ + 2.41 = 0.95 \angle -177.6^\circ\]

회로가 대칭이 아니므로 중성선에 전류가 흐른다.
• 평형 3상 Y-Y 방식

- 3개의 전원이 전폭과 주파수가 같고 위상만 120°씩 상차를 갖는다.
- 평형 3상이 성립될 조건

\[
|\vec{V}_{an}| = |\vec{V}_{bn}| = |\vec{V}_{cn}|
\]

\[
\vec{V}_{an} + \vec{V}_{bn} + \vec{V}_{cn} = 0
\]

정상순 (positive sequence)
역상순 (negative sequence)

\[
\vec{V}_{an} = V_p < 0^\circ
\]

\[
\vec{V}_{bn} = V_p < -120^\circ
\]

\[
\vec{V}_{cn} = V_p < -240^\circ = V_p < 120^\circ
\]

\[
\vec{V}_{an} = V_p < 0^\circ
\]

\[
\vec{V}_{bn} = V_p < 120^\circ
\]

\[
\vec{V}_{cn} = V_p < 240^\circ = V_p < -120^\circ
\]

\[
\vec{V}_{an} \text{이 } \vec{V}_{bn} \text{보다 } 120^\circ \text{ 앞선다.}
\]

\[
\vec{V}_{bn} \text{이 } \vec{V}_{cn} \text{보다 } 120^\circ \text{ 앞선다.}
\]

\[
\vec{V}_{an} \text{이 } \vec{V}_{bn} \text{보다 } 120^\circ \text{ 뒤진다.}
\]

\[
\vec{V}_{bn} \text{이 } \vec{V}_{cn} \text{보다 } 120^\circ \text{ 뒤진다.}
\]

(note) 정상순을 사용하여 3상 회로를 해석한다.
\[
\left(\text{Note} \right) \quad \frac{2\pi}{3} \text{ [rad]} \text{의 벡터 오피레이터}
\]

\[
a = e^{\frac{j2\pi}{3}} = \cos \frac{2\pi}{3} + j \sin \frac{2\pi}{3} = -\frac{1}{2} + j \frac{\sqrt{3}}{2}
\]

\[
\Rightarrow \quad a^2 = e^{\frac{j4\pi}{3}} = \cos \frac{4\pi}{3} + j \sin \frac{4\pi}{3} = -\frac{1}{2} - j \frac{\sqrt{3}}{2}
\]

\[
a^2 = \frac{a^2}{1} = \frac{a^2}{a^3} = a^{-1}
\]

\[
1 + a + a^2 = 0
\]

\[
a^3 = 1
\]

\[
1 - a^2 = \frac{3}{2} + j \frac{\sqrt{3}}{2} = \sqrt{3} \left(\frac{\sqrt{3}}{2} + j \frac{1}{2} \right)
\]

\[
\Rightarrow \quad 1 - a = \frac{3}{2} - j \frac{\sqrt{3}}{2} = \sqrt{3} \left(\frac{\sqrt{3}}{2} - j \frac{1}{2} \right)
\]

\[
\Rightarrow \quad \text{어느 벡터에 } a \text{을 곱한다는 것은 벡터의 크기는 변화가 없이 위상만 } \frac{2\pi}{3} \text{ [rad]} \text{ 앞서게 하는 것이다.}
\]

\[
\overrightarrow{V_{bn}} = V_p \angle 120^\circ = V_p \angle -\frac{2\pi}{3} = a^{-1} \quad \overrightarrow{V_{an}} = a^2 \overrightarrow{V_{an}} = a^2 V_p
\]

\[
\overrightarrow{V_{cn}} = V_p \angle 120^\circ = V_p \angle -\frac{2\pi}{3} = a \quad \overrightarrow{V_{an}} = a V_p
\]

\[
\text{• 상전류 (phase current)와 선전류 (line current)}
\]

Let 상전류 : \(\overline{I}_a, \overline{I}_b, \overline{I}_c \)

선전류 : \(\overline{I}_{aA}, \overline{I}_{bB}, \overline{I}_{cC} \)

\[
\Rightarrow \quad \overline{I}_a = \overline{I}_{aA} \\
\overline{I}_b = \overline{I}_{bB} \\
\overline{I}_c = \overline{I}_{cC}
\]

\[
\left(\text{Note} \right) \text{평형 3상 Y 회로에서 상전류와 선전류는 동일하다.}
\]
• 상전압 (phase voltage)

\[\overline{V}_{an} = V_p \angle 0^\circ \]
\[\overline{V}_{bn} = V_p \angle -120^\circ = a^2 \overline{V}_{an} = a^2 V_p \]
\[\overline{V}_{cn} = V_p \angle -240^\circ = V_p \angle 120^\circ = a \overline{V}_{an} = a V_p \]

• 선전압 (line-to-line voltage) 또는 신전압 (line voltage)

\[\overline{V}_{ab} = \overline{V}_{an} + \overline{V}_{nb} = \overline{V}_{an} - \overline{V}_{bn} \]
\[= \sqrt{3} \overline{V}_{an} - a^2 \overline{V}_{an} = (1 - a^2) \overline{V}_{an} \]
\[= \sqrt{3} \overline{V}_{an} \angle 30^\circ = \sqrt{3} V_p \angle 30^\circ \]

\[\overline{V}_{bc} = \overline{V}_{bn} + \overline{V}_{nc} = \overline{V}_{bn} - \overline{V}_{cn} \]
\[= \sqrt{3} \overline{V}_{bn} - a^2 \overline{V}_{bn} = (1 - a^2) \overline{V}_{bn} \]
\[= \sqrt{3} \overline{V}_{bn} \angle 30^\circ = \sqrt{3} V_p \angle -120^\circ + 30^\circ \]
\[= \sqrt{3} V_p \angle -90^\circ \]

\[\overline{V}_{ca} = \overline{V}_{cn} + \overline{V}_{na} = \overline{V}_{cn} - \overline{V}_{an} \]
\[= \sqrt{3} \overline{V}_{cn} - a^2 \overline{V}_{cn} = (1 - a^2) \overline{V}_{cn} \]
\[= \sqrt{3} \overline{V}_{cn} \angle 30^\circ = \sqrt{3} V_p \angle -240^\circ + 30^\circ \]
\[= \sqrt{3} V_p \angle -210^\circ \]

\[\Rightarrow \]

Let 선전압의 크기 \(V_L = \sqrt{3} V_p \)

\[\overline{V}_{ab} = \sqrt{3} V_p \angle 30^\circ = V_L \angle 30^\circ \]
\[\overline{V}_{bc} = \sqrt{3} V_p \angle -90^\circ = V_L \angle -90^\circ \]
\[\overline{V}_{ca} = \sqrt{3} V_p \angle -210^\circ = V_L \angle -210^\circ \]

(\textit{Note}) 선전압은 상전압 보다 크기가 \(\sqrt{3} \) 배가 되며, 위상이 30° 앞선다.
• 평형 3상 4선식 Y-Y 방식
(Balanced three-phase four-wire Y-Y connected system)

전원과 부하 모두 Y-결선으로 되어 있으며, 전원 전압이 평형전압이고 부하도 평형인 시스템.

• 선전류

By KVL

\[\begin{align*}
I_{aA} &= \frac{V_{an}}{Z_p} = \frac{V_B}{Z_p} \angle 0^\circ = \frac{V_B}{Z_p} \\
I_{bB} &= \frac{V_{bn}}{Z_p} = \frac{V_B}{Z_p} \angle -120^\circ = a^2 I_{aA} \\
I_{cC} &= \frac{V_{cn}}{Z_p} = \frac{V_B}{Z_p} \angle -240^\circ = a I_{aA}
\end{align*} \]

\[\Rightarrow \]

\[I_{Na} = I_{aA} + I_{bB} + I_{cC} = (1 + a^2 + a) I_{aA} = 0 \]

(Note) 전원과 부하가 평형인 3상 4선 Y-Y 결선에서 중심선에 전류가 호르지 않는다.
중심선을 제거하여도 시스템에 아무런 영향을 미치지 않는다.

(Note) 해석의 편의상 중심선이 존재한다고 가정하고 해석하는 것이 편리하다.
이 경우 3상 회로는 3개의 단상회로로 나누어 해석 할 수 있다.
하나의 단가 단상회로부터 전압과 전류가 구해지면 다른 상에 대한 것은 120°의
상차만을 고려하면 된다.
\[\text{[Ex]} \]

\[
\begin{align*}
\overline{V}_{an} &= 100 \angle 0^\circ \quad [\text{V}_{\text{RMS}}] \\
\overline{V}_{bn} &= 100 \angle -120^\circ \quad [\text{V}_{\text{RMS}}] \\
\overline{V}_{cn} &= 100 \angle -240^\circ \quad [\text{V}_{\text{RMS}}]
\end{align*}
\]

선적항 : \(R_L = 1 \; [\Omega] \)
상 부하 : \(Z_p = 3 + j3 \; [\Omega] \)

\[
\text{\cdot 한 상만 따로 분리시켜 해석 할 수 있다.}
\]

\[
\begin{align*}
\overline{I}_{aA} &= \frac{\overline{V}_{an}}{R_L + Z_p} = \frac{100 \angle 0^\circ}{4 + j3} \\
&= \frac{100 \angle 0^\circ}{5 \angle 36.9^\circ} = 20 \angle -36.9^\circ \\
\Rightarrow \quad \overline{I}_{bB} \text{, } \overline{I}_{cC} \text{는 위상만 } 120^\circ \text{씩 차이가 나므로}
\end{align*}
\]

\[
\begin{align*}
\overline{I}_{bb} &= 20 \angle -36.9^\circ - 120^\circ = 20 \angle -156.9^\circ \quad [\text{A}_{\text{RMS}}] \\
\overline{I}_{cc} &= 20 \angle -36.9^\circ - 240^\circ = 20 \angle -276.9^\circ \quad [\text{A}_{\text{RMS}}]
\end{align*}
\]
평형 3상 Delta 회로

- 상전압(phase voltage) : $\overline{V_{ab}}, \overline{V_{bc}}, \overline{V_{ca}}$
- 선간전압 (line voltage) : $\overline{V_{AB}}, \overline{V_{BC}}, \overline{V_{CA}}$

- 상전류(phase current) : $\overline{I_a}, \overline{I_b}, \overline{I_c}$
- 선전류(line current) : $\overline{I_{aA}}, \overline{I_{bB}}, \overline{I_{cC}}$

Delta 결선의 경우 상전압과 선간전압이 같다.

$$
\overline{V_{ab}} = \overline{V_{AB}}
$$
$$
\overline{V_{bc}} = \overline{V_{BC}}
$$
$$
\overline{V_{ca}} = \overline{V_{CA}}
$$

상전류와 선전류와의 관계

Let

$$
\overline{I_a} = I_p \angle 0^\circ
$$
$$
\overline{I_b} = I_p \angle -120^\circ = a^2 \overline{I_a} = a^2 I_p
$$
$$
\overline{I_c} = I_p \angle -240^\circ = I_p \angle 120^\circ = a \overline{I_a} = a I_p
$$

⇒ 선전류

\begin{align*}
\overline{I_{aA}} &= \overline{I_a} - \overline{I_c} \\
\overline{I_{bB}} &= \overline{I_b} - \overline{I_a} \\
\overline{I_{cC}} &= \overline{I_c} - \overline{I_b}
\end{align*}
따라서

\[I_{A} = I_{a} - I_{c} \]

\[= I_{p} < 0^\circ - I_{p} < -240^\circ \]

\[= I_{p} - aI_{p} = (1 - a)I_{p} \]

\[= \left(\sqrt{3} \angle -\frac{\pi}{6} \right) I_{p} = \sqrt{3} I_{p} \angle -30^\circ \]

\[\text{(note)} \]

\[1-a = \frac{3}{2} - j\frac{\sqrt{3}}{2} = \sqrt{3} \left(\frac{\sqrt{3}}{2} - j\frac{1}{2} \right) \]

\[= \sqrt{3} \left(\cos \frac{\pi}{6} - j \sin \frac{\pi}{6} \right) = \sqrt{3} \angle -\frac{\pi}{6} \]

\[\bar{I}_{bb} = \bar{I}_{b} - \bar{I}_{a} \]

\[= I_{p} < -120^\circ - I_{p} < 0^\circ \]

\[= a^2 I_{p} - I_{p} = (a^2 - 1)I_{p} = -(1-a^2)I_{p} \]

\[= -\left(\sqrt{3} \angle -\frac{\pi}{6} \right) I_{p} = \sqrt{3} I_{p} < -180^\circ + 30^\circ \]

\[= \sqrt{3} I_{p} < -150^\circ \]

\[\text{(note)} \quad -1 = 1 < 180^\circ \]

\[\bar{I}_{CCB} = \bar{I}_{c} - \bar{I}_{b} \]

\[= I_{p} < -240^\circ - I_{p} < -120^\circ \]

\[= a^2 I_{p} - aI_{p} = a(a - 1)I_{p} \]

\[= \left(1 < -\frac{2\pi}{3} \right) \left(\sqrt{3} \angle -\frac{\pi}{6} \right) I_{p} = \sqrt{3} I_{p} < 120^\circ - 30^\circ \]

\[= \sqrt{3} I_{p} < 90^\circ \]

\[\Rightarrow \text{선전류는 상전류보다 위상이 } 30^\circ \text{ 뒤지고, 크기는 상전류보다 } \sqrt{3} \text{배가 된다.} \]

⇒ 선전류의 크기: \(I_{L} \)

\[I_{L} = \sqrt{3} I_{p} \]

따라서
\[\bar{I}_{aA} = I_L \angle -30^\circ \]
\[\bar{I}_{bB} = I_L \angle -150^\circ \]
\[\bar{I}_{cC} = I_L \angle -270^\circ = I_L \angle 90^\circ \]

[Ex] \(\Delta - \Delta \) 평형 3상회로에서 선전류가 30[A]이며 각 상의 부하 \(Z_d = 3 + j4 \)이다.

![Diagram](image)

- 상전류:
 \[I_L = \sqrt{3} I_p \]
 \[\Rightarrow \quad I_p = \frac{I_L}{\sqrt{3}} = \frac{30}{\sqrt{3}} = 10 \sqrt{3} = 17.3 \ [A] \]

- 부하의 상전항:
 \[V_p = |Z_d| I_p = \sqrt{3^2 + 4^2} \times 17.3 = 86.5 \ [V] \]

- 부하의 선전항:
 \[V_p = V_L = 86.5 \ [V] \]
평형 3상 전원 및 부하의 등가변환

△ ↔ Y

△-회로와 Y-회로가 등가 관계가 성립되기 위해서는 각 선간전압, 즉 단자전압이 동일해야하며 선전류 역시 동일해야 한다.
\[\Delta - \text{회로 선간전압} \]
\[\begin{align*}
\vec{V}_{AB} &= \vec{V}_{ab} - Z_{\triangle} \vec{I}_{a\triangle} \\
\vec{V}_{BC} &= \vec{V}_{bc} - Z_{\triangle} \vec{I}_{b\triangle} \\
\vec{V}_{CA} &= \vec{V}_{ca} - Z_{\triangle} \vec{I}_{c\triangle}
\end{align*} \]
\[Y - \text{회로 선간전압} \]
\[\begin{align*}
\vec{V}_{AB} &= (\vec{V}_{an} - Z_Y \vec{I}_{aY}) - (\vec{V}_{bn} - Z_Y \vec{I}_{bY}) \\
\vec{V}_{BC} &= (\vec{V}_{bn} - Z_Y \vec{I}_{bY}) - (\vec{V}_{cn} - Z_Y \vec{I}_{cY}) \\
\vec{V}_{CA} &= (\vec{V}_{cn} - Z_Y \vec{I}_{cY}) - (\vec{V}_{an} - Z_Y \vec{I}_{aY})
\end{align*} \]

위 \(\Delta - \text{회로} \)와 \(Y - \text{회로} \)가 동작관계를 이루기 위해서는 다음 조건을 만족해야 한다.

\[\begin{align*}
\vec{V}_{ab} &= \vec{V}_{an} - \vec{V}_{bn} \\
\vec{V}_{bc} &= \vec{V}_{bn} - \vec{V}_{cn} \\
\vec{V}_{ca} &= \vec{V}_{cn} - \vec{V}_{an}
\end{align*} \]

\[Z_{\triangle} \vec{I}_{a\triangle} = Z_Y (\vec{I}_{aY} - \vec{I}_{bY}) \\
Z_{\triangle} \vec{I}_{b\triangle} = Z_Y (\vec{I}_{bY} - \vec{I}_{cY}) \\
Z_{\triangle} \vec{I}_{c\triangle} = Z_Y (\vec{I}_{cY} - \vec{I}_{aY})
\]

- 평형 3상 진원의 동등변환

\(Y - \text{회로} \) 선간압 \(\vec{V}_{an}, \vec{V}_{bn}, \vec{V}_{cn} \)과 \(\Delta - \text{회로} \) 선간압 \(\vec{V}_{ab}, \vec{V}_{bc}, \vec{V}_{ca} \)은 각각 평형 3상이다.

\[
\Rightarrow \quad \Delta - \text{회로 선간압} \quad \vec{V}_{ab}, \vec{V}_{bc}, \vec{V}_{ca} \text{는 } Y - \text{회로 선간압} \quad \vec{V}_{an}, \vec{V}_{bn}, \vec{V}_{cn} \text{보다 위상이 } 30^\circ \text{ 앞서고 크기는 } \sqrt{3} \text{배된다.}
\]

\[\textbf{(note)} \quad Y - \text{회로} \Rightarrow \Delta - \text{회로} \]

\[\begin{align*}
\vec{V}_{ab} &= \vec{V}_{an} - \vec{V}_{bn} = (1 - a^2) \vec{V}_{an} = (\sqrt{3} \angle \frac{\pi}{6}) \vec{V}_{an} = \sqrt{3} V_P \angle 30^\circ \\
\vec{V}_{bc} &= \vec{V}_{bn} - \vec{V}_{cn} = (1 - a^2) \vec{V}_{bn} = (\sqrt{3} \angle \frac{\pi}{6}) \vec{V}_{bn} = \sqrt{3} V_P \angle -120^\circ + 30^\circ = \sqrt{3} V_P \angle -90^\circ \\
\vec{V}_{ca} &= \vec{V}_{cn} - \vec{V}_{an} = (1 - a^2) \vec{V}_{cn} = (\sqrt{3} \angle \frac{\pi}{6}) \vec{V}_{cn} = \sqrt{3} V_P \angle 120^\circ + 30^\circ = \sqrt{3} V_P \angle 150^\circ
\end{align*} \]
(note) △-회로 ⇒ Y-회로

\[\bar{V}_{an} = \frac{1}{\sqrt{3}} \, \bar{V}_{ab} \angle -30^\circ = \frac{1}{\sqrt{3}} \, V_L \angle -30^\circ \]
\[\bar{V}_{bn} = \frac{1}{\sqrt{3}} \, \bar{V}_{bc} \angle -30^\circ = \frac{1}{\sqrt{3}} \, V_L \angle -150^\circ \]
\[\bar{V}_{cn} = \frac{1}{\sqrt{3}} \, \bar{V}_{ca} \angle -30^\circ = \frac{1}{\sqrt{3}} \, V_L \angle -270^\circ = \frac{1}{\sqrt{3}} \, V_L \angle 90^\circ \]

* 평형 3상 부하의 등가변환

\[Z_{\triangle} \bar{I}_{\triangle} = Z_Y (\bar{I}_{aY} - \bar{I}_{bY}) \] (a)
\[Z_{\triangle} \bar{I}_{b\triangle} = Z_Y (\bar{I}_{bY} - \bar{I}_{cY}) \] (b)
\[Z_{\triangle} \bar{I}_{c\triangle} = Z_Y (\bar{I}_{cY} - \bar{I}_{aY}) \] (c)

식 (a)와 식 (c)의 차로부터

\[Z_{\triangle} (\bar{I}_{a\triangle} - \bar{I}_{c\triangle}) = Z_Y (2 \bar{I}_{aY} - \bar{I}_{bY} - \bar{I}_{cY}) \]

평형 3상 Y-회로에서

\[\bar{I}_{aY} + \bar{I}_{bY} + \bar{I}_{cY} = 0 \]

가 되므로 다음과 같은 관계가 성립된다.

\[Z_{\triangle} (\bar{I}_{a\triangle} - \bar{I}_{c\triangle}) = 3Z_Y \bar{I}_{aY} \]

평형 3상 △-회로에서

\[\bar{I}_{a\triangle} - \bar{I}_{c\triangle} = \bar{I}_{aA} \]

가 되며 평형 3상 Y-회로에서는 상전류와 선전류가 동일 즉,

\[\bar{I}_{aY} = \bar{I}_{aA} \]

이므로 다음과 같다.

\[Z_{\triangle} \bar{I}_{aA} = 3Z_Y \bar{I}_{aA} \]

따라서

\[Z_{\triangle} = 3Z_Y \text{ 또는 } Z_Y = \frac{1}{3} Z_{\triangle} \]
3상 회로의 전력

- 3상 회로의 전력은 그 결선방식이나 평형 또는 불평형에 관계없이 각 상의 전력을 단상에서와 같이 구한 후에 이들의 합을 구하면 된다.

\[\text{Let} \]
상전압의 크기 : \(V_a, V_b, V_c \ [V_{rms}] \)
상전류의 크기 : \(I_a, I_b, I_c \ [A_{rms}] \)
상전압과 상전류의 위상 차 : \(\theta_a, \theta_b, \theta_c \)
(각 상의 부하 임피던스의 임피던스 각과 같다.)

- 유효전력(평균전력)

\[P_{3\phi} = V_a I_a \cos \theta_a + V_b I_b \cos \theta_b + V_c I_c \cos \theta_c \ [W] \]

- 무효전력

\[Q_{3\phi} = V_a I_a \sin \theta_a + V_b I_b \sin \theta_b + V_c I_c \sin \theta_c \ [VAR] \]

- 평형 3상 회로의 경우

상전압의 크기 : \(V_a = V_b = V_c = V_p \ [V_{rms}] \)
상전류의 크기 : \(I_a = I_b = I_c = I_p \ [A_{rms}] \)
상전압과 상전류의 위상 차 : \(\theta_a = \theta_b = \theta_c = \theta_p \)

\[P_{3\phi} = 3 V_p I_p \cos \theta_p = 3 P_{1\phi} \ [W] \]
\[Q_{3\phi} = 3 V_p I_p \sin \theta_p = 3 Q_{1\phi} \ [VAR] \]

\((note)\) 평형 3상 회로에서의 전력은 각 상에서의 유효전력 또는 무효전력의 3배가된다.
• 평형 3상 회로의 전력은 선전압과 선전류로 표시

 • Y-접선

 \[
 V_p = \frac{1}{\sqrt{3}} V_L \quad [V_{rms}]
 \]

 \[
 I_p = I_L \quad [A_{rms}]
 \]

 \[\Rightarrow\]

 \[
 P_{3\omega} = 3 V_p I_p \cos \theta_p = 3 \frac{1}{\sqrt{3}} V_L I_L \cos \theta_p = \sqrt{3} V_L I_L \cos \theta_p \quad [W]
 \]

 \[
 Q_{3\omega} = 3 V_p I_p \sin \theta_p = 3 \frac{1}{\sqrt{3}} V_L I_L \sin \theta_p = \sqrt{3} V_L I_L \sin \theta_p \quad [VAR]
 \]

 • △-접선

 \[
 V_p = V_L \quad [V_{rms}]
 \]

 \[
 I_p = \frac{1}{\sqrt{3}} I_L \quad [A_{rms}]
 \]

 \[\Rightarrow\]

 \[
 P_{3\omega} = 3 V_p I_p \cos \theta_p = 3 V_L \frac{1}{\sqrt{3}} I_L \cos \theta_p = \sqrt{3} V_L I_L \cos \theta_p \quad [W]
 \]

 \[
 Q_{3\omega} = 3 V_p I_p \sin \theta_p = 3 V_L \frac{1}{\sqrt{3}} I_L \sin \theta_p = \sqrt{3} V_L I_L \sin \theta_p \quad [VAR]
 \]

따라서 접선에 상관없이

 \[
 P_{3\omega} = 3 V_p I_p \cos \theta_p = \sqrt{3} V_L I_L \cos \theta_p \quad [W]
 \]

 \[
 Q_{3\omega} = 3 V_p I_p \sin \theta_p = \sqrt{3} V_L I_L \sin \theta_p \quad [VAR]
 \]

이가. 단 위상차 \(\theta_p\)는 상전압과 상전류의 위상 차이다.
• 평형 3상 회로의 순시 전력

\textit{Let}

- 상전압

\[v_a(t) = \sqrt{2} V_p \cos \omega t \]
\[v_b(t) = \sqrt{2} V_p \cos (\omega t - 120^\circ) \]
\[v_c(t) = \sqrt{2} V_p \cos (\omega t + 120^\circ) \]

- 상전류

\[i_a(t) = \sqrt{2} I_p \cos (\omega t - \theta_p) \]
\[i_b(t) = \sqrt{2} I_p \cos (\omega t - 120^\circ - \theta_p) \]
\[i_c(t) = \sqrt{2} I_p \cos (\omega t + 120^\circ - \theta_p) \]

\[\Rightarrow \text{전체 순시전력} \]

\[p_{30}(t) = p_a(t) + p_b(t) + p_c(t) \]
\[= v_a(t)i_a(t) + v_b(t)i_b(t) + v_c(t)i_c(t) \]
\[= 2 V_p I_p \left[\cos \omega t \cos (\omega t - \theta_p) + \cos (\omega t - 120^\circ) \cos (\omega t - 120^\circ - \theta_p) + \cos (\omega t + 120^\circ - \theta_p) \right] \]
\[= 3 V_p I_p \cos \theta_p \]

(note) 삼각함수 정리

\[\cos A \cos B = \frac{1}{2} \left[\cos (A - B) + \cos (A + B) \right] \]

따라서 평형 3상 회로의 전체 순시 전력은 시간에 관계없이 일정하며, 이 값은 평형 3상 회로의 유효 전력과 같다.

\[p_{30}(t) = 3 V_p I_p \cos \theta_p = P_{30} \]

순시 전력의 축합이 일정하게 되므로 3상 전동기의 경우 일정한 회전력(torque)를 받아도 전동이 매우 작고 기동이 용이하다. 이와 같은 현상은 다상 회로에도 그대로 적용된다.
• 복소전력

\[S_3 = P_3 + jQ_3 \]
\[= 3 V_p I_p \cos \theta_p + j 3 V_p I_p \sin \theta_p \]
\[= 3 \left(V_p I_p \cos \theta_p + j V_p I_p \sin \theta_p \right) \]
\[= 3 S_1 \]

전체 복소전력은 각 상의 복소전력의 3배가 된다.

• 피상전력

\[AP_3 = \sqrt{P_3^2 + Q_3^2} \]
\[= \sqrt{ \left(3 V_p I_p \cos \theta_p \right)^2 + \left(3 V_p I_p \sin \theta_p \right)^2 } \]
\[= 3 V_p I_p = \sqrt{3} V_L I_L \]
\[= 3 AP_1 \]

따라서 피상전력은 각상의 피상전력에 3배를 한 것과 같다.

• 역률/무효율

\[P,F = \frac{\text{유효전력}}{\text{피상전력}} = \frac{P_3}{AP_3} = \cos \theta_p \]
\[R,F = \frac{\text{무효전력}}{\text{피상전력}} = \frac{Q_3}{AP_3} = \sin \theta_p \]

따라서 평형 3상 회로에서 역률과 무효율은 각 상의 역률과 무효율과 같다.
[Remark]

◆ 전원의 경우

전원의 경우 ∆-결선을 사용하지 않는다.

- 전압이 완벽하게 평형을 이루지 않을 경우 세 상의 전압 합이 0이 되지 않기 때문에
 ∆-결선을 환류하는 전류가 생겨 발생기를 가열하게 된다.
- Y-결선 발전기가 상전압이 더 낮기 때문에 절연이 더 용이해진다.

◆ 부하의 경우

Y-결선보다 ∆-결선을 주로 사용한다.

- ∆-결선의 경우, 부하들이 선로에 직접 연결되어 있으므로 각 상의 부하를 추가하거나
 제거하기가 용이하다. (Y-결선의 경우는 중성점에는 연결할 수 없기 때문에 그렇게 안된다.)
- 상전류가 ∆인 경우가 Y인 경우보다 작다.
- 상전압은 ∆인 경우가 Y인 경우보다 크다.

⇒ ∆-결선은 중성선이 없으므로 3선 방식이 된다.
[Ex] Y-△ 결선

Let

\[
\begin{align*}
\bar{V}_{an} &= V_p < 0^\circ \\
\bar{V}_{bn} &= V_p < -120^\circ \\
\bar{V}_{cn} &= V_p < 120^\circ \\
Z_\Delta &= |Z_\Delta| \angle \theta_Z
\end{align*}
\]

- 부하의 상전압 (전원 측의 선간전압과 같다.)

\[
\begin{align*}
\bar{V}_{AB} &= \bar{V}_{ab} = \sqrt{3} V_p < 30^\circ \\
\bar{V}_{BC} &= \bar{V}_{bc} = \sqrt{3} V_p < -90^\circ \\
\bar{V}_{CA} &= \bar{V}_{ca} = \sqrt{3} V_p < 150^\circ
\end{align*}
\]

△ 결선의 상전압이 Y-결선의 상전압보다 크다.

- 부하의 상전류

\[
\begin{align*}
\bar{I}_{AB} &= \frac{\bar{V}_{AB}}{Z_\Delta} = \frac{\sqrt{3} V_p}{|Z_\Delta|} \angle 30^\circ - \theta_Z = I_p \angle 30^\circ - \theta_Z \\
\bar{I}_{BC} &= \frac{\bar{V}_{BC}}{Z_\Delta} = \frac{\sqrt{3} V_p}{|Z_\Delta|} \angle -90^\circ - \theta_Z = I_p \angle -90^\circ - \theta_Z \\
\bar{I}_{CA} &= \frac{\bar{V}_{CA}}{Z_\Delta} = \frac{\sqrt{3} V_p}{|Z_\Delta|} \angle 150^\circ - \theta_Z = I_p \angle 150^\circ - \theta_Z
\end{align*}
\]

여기서 \(I_p = \frac{\sqrt{3} V_p}{|Z_\Delta|} = \frac{V_p}{|Z_\Delta|} \)
• 선전류

\[I_{aA} = I_{AB} - I_{CA} = \sqrt{3} I_p \leq -\theta_Z = I_L \leq -\theta_Z \]
\[I_{bB} = I_{BC} - I_{AB} = \sqrt{3} I_p \leq 120^\circ - \theta_Z = I_L \leq 120^\circ - \theta_Z \]
\[I_{cC} = I_{CA} - I_{BC} = \sqrt{3} I_p \leq 120^\circ - \theta_Z = I_L \leq 120^\circ - \theta_Z \]

여기서 \(I_L = \frac{\sqrt{3}}{3} I_p \)

• 부하에서 소모하는 전력

\[P_{1\varphi} = V_L I_p \cos \theta_Z \]

여기서

\[I_p = \frac{I_L}{\sqrt{3}} \]

따라서

\[P_{1\varphi} = \frac{V_L I_L}{\sqrt{3}} \cos \theta_Z \]

부하 전체가 소모하는 전력

\[P_{3\varphi} = 3 \cdot P_{1\varphi} = 3 \cdot \frac{V_L I_L}{\sqrt{3}} \cos \theta_Z = \sqrt{3} V_L I_L \cos \theta_Z \]
[Ex]

Let

선전압 : \(V_L = 300 \text{ [V}_{\text{rms}} \text{]} \)
\(\triangle \)-결선 부하 : P.F. = 0.8 lagging
\(\triangle \)-결선 부하가 소모하는 전력 : 1200[W]

- 부하는 상전류 \(I_p \)

단상에서 300 [V\(_{\text{rms}}\)] 선전압에서 지상 p.f 0.8로 400[W] 전력 공급
From \(P_L = V_L I_p \cos \theta_Z \)
\(\Rightarrow 400 = 300 \times I_p \times 0.8 \)
따라서
\(I_p = 1.667 \text{ [A}_{\text{rms}} \text{]} \)

- 부하 임피던스 \(Z_\Delta \)

From \(I_p = \frac{V_L}{|Z_\Delta|} \)
\(\Rightarrow |Z_\Delta| = \frac{V_L}{I_p} = \frac{300}{1.667} = 180 \)
\(\theta_Z = \cos^{-1}(\text{p.f}) = \cos^{-1}0.8 = 36.9^\circ \)
따라서
\(Z_\Delta = |Z_\Delta| \angle \theta_Z = 180 \angle 36.9^\circ \text{ [Ω]} \)

- \(Y \)-결선으로 동기 변환된 부하 \(Z_Y \)

\(Z_Y = \frac{1}{3} Z_\Delta = \frac{180 \angle 36.9^\circ}{3} = 60 \angle 36.9^\circ \text{ [Ω]} \)

- 선전류 \(I_L \)

\(I_L = \sqrt{3} I_p = \sqrt{3} \times 1.667 = 2.89 \text{ [A}_{\text{rms}} \text{]} \)
\[\text{Ex} \quad \triangle - \triangle \text{ 회로} \]

Let \[\overline{V}_{ab} = 180 \degree \angle 0^\circ \ \text{[V}_{\text{rms}}] \]
\[Z_L = 11 \ \text{[\Omega]} \]
\[Z_\phi = 21 + j72 \ \text{[\Omega]} \]

\[\triangle - \triangle \text{ 회로} \Leftrightarrow \text{Y-Y 회로로 변환하여 구하면 쉽다.} \]

\[\Rightarrow \]
\[Z_Y = \frac{1}{3} Z_\phi = \frac{1}{3} (21 + j72) = 7 + j24 \ \text{[\Omega]} \]
\[\overline{V}_{an} = \frac{1}{\sqrt{3}} \overline{V}_{ab} \angle -30^\circ = \frac{180}{\sqrt{3}} \angle -30^\circ = 60\sqrt{3} \angle -30^\circ \ \text{[V}_{\text{rms}}] \]

\[\Rightarrow \]
다음 회로와 같은 단상 회로로 취급하여 해석 할 수 있다.

여기서
\[Z_T = Z_L + \frac{1}{3} Z_\phi = Z_L + Z_Y = 11 + (7 + j24) = 18 + j24 \ \text{[\Omega]} \]
• 선전류 \(\bar{I}_{aA} \)

\[
\bar{I}_{aA} = \frac{\bar{V}_m}{Z_T} = \frac{60\sqrt{3} \angle -30^\circ}{18 + j24} = \frac{60\sqrt{3} \angle -30^\circ}{30 \angle 53.1^\circ} = 2\sqrt{3} \angle -83.1^\circ \quad [\text{A_{ms}}]
\]

나머지 선전류 \(\bar{I}_{bb}, \bar{I}_{cc} \)는 \(\bar{I}_{aA} \)와 120°의 위상차를 가지므로 다음과 같다.

\[
\bar{I}_{bb} = \bar{I}_{aA} \angle -120^\circ = 2\sqrt{3} \angle -83.1^\circ - 120^\circ = 2\sqrt{3} \angle -203.1^\circ \quad [\text{A_{ms}}]
\]
\[
\bar{I}_{cc} = \bar{I}_{aA} \angle 120^\circ = 2\sqrt{3} \angle -83.1^\circ + 120^\circ = 2\sqrt{3} \angle 36.9^\circ \quad [\text{A_{ms}}]
\]

• 부하에서 소비되는 전력

\[
P_{1\phi} = R \cdot |\bar{I}_{aA}|^2 = 18 \times (2\sqrt{3})^2 = 216 \quad [\text{W}]
\]
\[
\Rightarrow P_{3\phi} = 3P_{1\phi} = 3 \times 216 = 648 \quad [\text{W}]
\]
[Ex] Y–Y 회로

Let

선전압 : \(V_L = 200 \) [Vrms]
부하 : \(Z_Y = 24 + j7 \) [\(\Omega \)]

- 상전압의 크기

\[
V_p = \frac{V_L}{\sqrt{3}} = \frac{200}{\sqrt{3}}
\]

- 선전류의 크기 (=상전류의 크기)

\[
I_L = I_p = \frac{V_p}{|Z_Y|} = \frac{200}{\sqrt{24^2 + 7^2}} = \frac{8}{\sqrt{3}} = 4.6 \text{ [Arms]}
\]

- 유 효 전력

\[
P_{3\varphi} = 3 \times (RI_p^2) = 3 \times 24 \times \left(\frac{8}{\sqrt{3}}\right)^2 = 1536 \text{ [W]}
\]

- 무효 전력

\[
Q_{3\varphi} = 3 \times (XI_p^2) = 3 \times 7 \times \left(\frac{8}{\sqrt{3}}\right)^2 = 448 \text{ [VAR]}
\]

- 피상전력

\[
AP_{3\varphi} = 3AP_{1\varphi} = 3 \times \left(\frac{8}{\sqrt{3}}\right) \times \frac{200}{\sqrt{3}} = 1600 \text{ [VA]}
\]

- 역률

\[
P.F. = \frac{P_{3\varphi}}{AP_{3\varphi}} = \frac{P_{1\varphi}}{AP_{1\varphi}} = \cos \theta_Z = \frac{R}{|Z_Y|} = \frac{24}{\sqrt{24^2 + 7^2}} = \frac{24}{25}
\]

- 무효률

\[
R.F. = \frac{Q_{3\varphi}}{AP_{3\varphi}} = \frac{Q_{1\varphi}}{AP_{1\varphi}} = \sin \theta_Z = \frac{X}{|Z_Y|} = \frac{7}{\sqrt{24^2 + 7^2}} = \frac{7}{25}
\]
[Remark] Impedance 동가변환 \((\Delta \rightarrow Y)\)

- \(\Delta\)-회로와 \(Y\)-회로를 동가 변환하기 위해서는 \(\Delta\) a, b, c에서 본 임피던스가 같아야 한다.

\[
\begin{align*}
\text{바디 a-b : } Z_a + Z_b &= Z_{ab} \left/ \left(Z_{bc} + Z_{ca} \right) \right. \\
Z_a + Z_b &= Z_{ab} \left(Z_{bc} + Z_{ca} \right) \left/ \left(Z_{ab} + Z_{bc} + Z_{ca} \right) \right. \\
&= \frac{Z_{ab}(Z_{bc} + Z_{ca})}{Z_{ab} + Z_{bc} + Z_{ca}} \quad (1) \\
\text{바디 b-c : } Z_b + Z_c &= Z_{bc} \left/ \left(Z_{ab} + Z_{ca} \right) \right. \\
Z_b + Z_c &= Z_{bc} \left(Z_{ab} + Z_{ca} \right) \left/ \left(Z_{ab} + Z_{bc} + Z_{ca} \right) \right. \\
&= \frac{Z_{bc}(Z_{ab} + Z_{ca})}{Z_{ab} + Z_{bc} + Z_{ca}} \quad (2) \\
\text{바디 c-a : } Z_c + Z_a &= Z_{ca} \left/ \left(Z_{ab} + Z_{bc} \right) \right. \\
Z_c + Z_a &= Z_{ca} \left(Z_{ab} + Z_{bc} \right) \left/ \left(Z_{ab} + Z_{bc} + Z_{ca} \right) \right. \\
&= \frac{Z_{ca}(Z_{ab} + Z_{bc})}{Z_{ab} + Z_{bc} + Z_{ca}} \quad (3)
\end{align*}
\]

\[
\begin{align*}
\text{식 } [(1)+(2)+(3)]/2 \text{를 구하면 } \\
Z_a + Z_b + Z_c &= \frac{Z_{ab}Z_{bc} + Z_{bc}Z_{ca} + Z_{ca}Z_{ab}}{Z_{ab} + Z_{bc} + Z_{ca}} \quad (4)
\end{align*}
\]

\[\Rightarrow \Delta \rightarrow Y \text{ 변환} \]

\[
\begin{align*}
\text{식 } (4) - \text{식 } (2) : \\
Z_a &= \frac{Z_{ca}Z_{ab}}{Z_{ab} + Z_{bc} + Z_{ca}} \quad (5a) \\
\text{식 } (4) - \text{식 } (3) : \\
Z_b &= \frac{Z_{ab}Z_{bc}}{Z_{ab} + Z_{bc} + Z_{ca}} \quad (5b) \\
\text{식 } (4) - \text{식 } (1) : \\
Z_c &= \frac{Z_{bc}Z_{ca}}{Z_{ab} + Z_{bc} + Z_{ca}} \quad (5c)
\end{align*}
\]

(note) \(\Delta\)-결선을 \(Y\)-결선으로 변환하려면 \(\Delta\)-결선 임피던스의 접촉점에 접속되어 있는 양 임피던스를 꼭하여 임피던스의 총합으로 나누면 된다.
$\Rightarrow Y \rightarrow \Delta$ 변환

식 (5a)을 \(Z_{ab} \)에 대해 정리: \[Z_{ab} = Z_a \left(\frac{Z_{ab}}{Z_{ca}} + \frac{Z_{bc}}{Z_{ca}} + 1 \right) \] (6a)

식 (5b)을 \(Z_{bc} \)에 대해 정리: \[Z_{bc} = Z_a \left(1 + \frac{Z_{bc}}{Z_{ab}} + \frac{Z_{ca}}{Z_{ab}} \right) \] (6b)

식 (5c)을 \(Z_{ca} \)에 대해 정리: \[Z_{ca} = Z_c \left(\frac{Z_{ab}}{Z_{bc}} + 1 + \frac{Z_{ca}}{Z_{bc}} \right) \] (6c)

* 식 (5)에서 \(Z_a, Z_b, Z_c \)의 관계를 구하면

\[\frac{Z_a}{Z_b} = \frac{Z_{ca}}{Z_{bc}}, \quad \frac{Z_b}{Z_c} = \frac{Z_{ab}}{Z_{ca}}, \quad \frac{Z_c}{Z_a} = \frac{Z_{bc}}{Z_{ab}} \] (7)

\Rightarrow 식 (7)을 식 (6)에 대입하여 정리하면

\[Z_{ab} = \frac{Z_a Z_b + Z_b Z_c + Z_c Z_a}{Z_c} \] (8a)

\[Z_{bc} = \frac{Z_a Z_b + Z_b Z_c + Z_c Z_a}{Z_a} \] (8b)

\[Z_{ca} = \frac{Z_a Z_b + Z_b Z_c + Z_c Z_a}{Z_b} \] (8c)

(note) \(Y \)-결선을 \(\Delta \)-결선으로 변환하려면 2개씩 조합한 임피던스 곱의 합을 접속되어 있지 않은 임피던스로 나누어 얻는다.
3상 불평형 회로

- 3상 교류에서는 대칭 3상 평형회로가 되도록 설계되어 유지되고 있으나 실제는 전원이 대칭이 라도 부하가 불평형인 경우도 있고 또한 사고시에는 전원이나 부하 다같이 불평형인 경우가 발생 한다.

⇒ 불평형 회로의 일반적 해법으로 대칭 좌표법을 사용.
- 간단한 불평형 회로에서는 키르히호프의 법칙을 사용하여 해석할 수 있다.

불평형 Y-Y 회로

- 중성점 접지식 Y-Y 회로 (3상 4선식 회로)

- 전원 \(\overrightarrow{V_{an}}, \overrightarrow{V_{bn}}, \overrightarrow{V_{cn}} \)은 대칭 또는 비대칭일 수 있으며 부하 \(Z_a, Z_b, Z_c \)는 불평형 부하이다. 중성점 nN 사이에 임피던스 \(Z_n \)이 있다.

- 중성점 n을 기준인 양전위라 했을 때 중성점 N에서의 전위차를 \(\overrightarrow{V_{NN}} \)이라 하자.

\[
\begin{align*}
I_{aA} &= \frac{(\overrightarrow{V_{an}} - \overrightarrow{V_{Nn}})}{Z_a} = (\overrightarrow{V_{an}} - \overrightarrow{V_{Nn}}) Y_a \\
I_{bB} &= \frac{(\overrightarrow{V_{bn}} - \overrightarrow{V_{Nn}})}{Z_b} = (\overrightarrow{V_{bn}} - \overrightarrow{V_{Nn}}) Y_b \\
I_{cC} &= \frac{(\overrightarrow{V_{cn}} - \overrightarrow{V_{Nn}})}{Z_c} = (\overrightarrow{V_{cn}} - \overrightarrow{V_{Nn}}) Y_c \\
I_{nN} &= -\frac{\overrightarrow{V_{Nn}}}{Z_n} = -Y_n \overrightarrow{V_{Nn}} \\
\overline{I}_{aA} + \overline{I}_{bB} + \overline{I}_{cC} + \overline{I}_{nN} &= 0
\end{align*}
\]

⇒

\[
(\overrightarrow{V_{an}} - \overrightarrow{V_{Nn}}) Y_a + (\overrightarrow{V_{bn}} - \overrightarrow{V_{Nn}}) Y_b + (\overrightarrow{V_{cn}} - \overrightarrow{V_{Nn}}) Y_c - Y_n \overrightarrow{V_{Nn}} = 0
\]
따라서 중심점 전위 \(\overline{V}_{NN} \)은 다음과 같다.

\[
\overline{V}_{NN} = \frac{Y_a \overline{V}_{an} + Y_b \overline{V}_{bn} + Y_c \overline{V}_{cn}}{Y_a + Y_b + Y_c + Y_n}
\]

\(\textit{note} \) 위의 결과는 Millman의 정리를 사용하여 구할 수 있다.

\[\Rightarrow \overline{V}_{NN} \text{의 값이 구해지면 } \overline{I}_{aA}, \overline{I}_{bB}, \overline{I}_{cC}, \overline{I}_{nN} \text{의 값을 구할 수 있다.} \]

■ 중심점 비점지식 Y-Y 회로 (3상 3선식 회로)

*3상 3선식 Y-Y 회로는 3상 4선식 Y-Y 회로에서 \(Z_n = \infty \) (\(Y_n = 0 \), \(I_{nN} = 0 \)인 경우와 같으므로 이 조건을 3상 4선식 Y-Y 회로에 대입하여 구할 수 있다.

\[
\begin{align*}
I_{aA} &= \frac{(V_{an} - \overline{V}_{NN})}{Z_a} = (V_{an} - \overline{V}_{NN}) Y_a \\
I_{bB} &= \frac{(V_{bn} - \overline{V}_{NN})}{Z_b} = (V_{bn} - \overline{V}_{NN}) Y_b \\
I_{cC} &= \frac{(V_{cn} - \overline{V}_{NN})}{Z_c} = (V_{cn} - \overline{V}_{NN}) Y_c \\
\overline{I}_{aA} + \overline{I}_{bB} + \overline{I}_{cC} &= 0
\end{align*}
\]

\[\Rightarrow \]

\[
(V_{an} - \overline{V}_{NN}) Y_a + (V_{bn} - \overline{V}_{NN}) Y_b + (V_{cn} - \overline{V}_{NN}) Y_c = 0
\]

따라서 중심점 전위 \(\overline{V}_{NN} \)은 다음과 같다.

\[
\overline{V}_{NN} = \frac{Y_a \overline{V}_{an} + Y_b \overline{V}_{bn} + Y_c \overline{V}_{cn}}{Y_a + Y_b + Y_c}
\]

\(\textit{note} \) 전원이 대칭인 경우: \(\overline{V}_{an} = V_p \leq 0^\circ \)라고 하면 \(\overline{V}_{bn} = a^2 V_p \), \(\overline{V}_{cn} = a V_p \)의
관계를 사용하여 계산하면 된다.

[Ex] 대칭 3상 전원 \vec{V}_{an}, \vec{V}_{bn}, \vec{V}_{cn}에 볼평형 3상 부하 C_a, C_b, C_c의 정전용량을 접속하고 중성점 N을 점지했을 때 전원측 중성점 n에서의 대지전위 \vec{V}_n을 구하라. 각주파수는 ω이다.

- 선전류의 합은
 $$\vec{I}_{an} + \vec{I}_{bn} + \vec{I}_{cn} = 0$$
 으로 되며,
 $$\vec{I}_{an} = j\omega C_a (\vec{V}_{an} + \vec{V}_n)$$
 $$\vec{I}_{bn} = j\omega C_b (\vec{V}_{bn} + \vec{V}_n)$$
 $$\vec{I}_{cn} = j\omega C_c (\vec{V}_{cn} + \vec{V}_n)$$
 따라서
 $$j\omega C_a (\vec{V}_{an} + \vec{V}_n) + j\omega C_b (\vec{V}_{bn} + \vec{V}_n) + j\omega C_c (\vec{V}_{cn} + \vec{V}_n) = 0$$
 $$\Rightarrow$$
 $$\vec{V}_n = \frac{C_a \vec{V}_{an} + C_b \vec{V}_{bn} + C_c \vec{V}_{cn}}{C_a + C_b + C_c}$$
 (a)

- 전원이 3상 대칭이므로
 $\vec{V}_{an} = V_p < 0^\circ$

라 하면
 $\vec{V}_{bn} = a^2 V_p$
 $\vec{V}_{cn} = a V_p$
가 된다. 위 식을 식 (a)에 대입하여 구리하면 중성점에서의 전위는 다음과 같다.

$$V_n = \sqrt{\frac{C_a(C_a-C_b)+C_b(C_b-C_c)+C_c(C_c-C_a)}{C_a+C_b+C_c}} V_p$$
불평형 Δ-Y 회로

- 전원 임피던스가 극히 작을 때는 3상 단자 전압은 부하에 관계없이 거의 일정하게 된다. 이와 같이 부하에 관계없이 일정한 선간전압(Δ 전압)을 갖는 전원에 불평형 Y-부하가 접속된 경우.

- 선간전압(Δ 전압) 상호간에는
 \[\overline{V}_{ab} + \overline{V}_{bc} = - \overline{V}_{ca} \]
 의 관계가 있으며
 \[\overline{V}_{ab} + \overline{V}_{bc} + \overline{V}_{ca} = 0 \]
 가 된다.

- 그림에 키르히호프의 법칙을 적용하면

 \[
 \begin{align*}
 \overline{V}_{ab} &= Z_a \overline{I}_{aA} - Z_b \overline{I}_{bb} \\
 \overline{V}_{bc} &= Z_b \overline{I}_{bb} - Z_b \overline{I}_{cC} \\
 0 &= \overline{I}_{aA} + \overline{I}_{bb} + \overline{I}_{cC}
 \end{align*}
 \]

 \[\Rightarrow \]

 \[
 \begin{bmatrix} Z_a & Z_b & 0 \\ 0 & Z_b & -Z_c \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \overline{I}_{aA} \\ \overline{I}_{bb} \\ \overline{I}_{cC} \end{bmatrix} = \begin{bmatrix} \overline{V}_{ab} \\ \overline{V}_{bc} \\ 0 \end{bmatrix}
 \]

- 선류류

 \[
 \overline{I}_{aA} = \frac{Z_b(\overline{V}_{ab} + \overline{V}_{bc}) + Z_c \overline{V}_{ab}}{Z_a Z_b + Z_b Z_c + Z_c Z_a} \quad \Delta
 \]

 \[
 \overline{I}_{bb} = \frac{Z_a \overline{V}_{bc} - Z_c \overline{V}_{ab}}{\Delta}
 \]

 \[
 \overline{I}_{cC} = \frac{-Z_b(\overline{V}_{bc} + \overline{V}_{ab}) - Z_a \overline{V}_{bc}}{Z_a Z_b + Z_b Z_c + Z_c Z_a} \quad \Delta
 \]

 여기서

 \[\Delta = Z_a Z_b + Z_b Z_c + Z_c Z_a \]
• 부하의 상전압

\[\overline{V}_{AN} = Z_a \overline{I}_{aA} \]
\[\overline{V}_{BN} = Z_b \overline{I}_{bB} \]
\[\overline{V}_{CN} = Z_c \overline{I}_{cC} \]

불평형 △ 부하

• 부하의 상전류

\[\overline{I}_{AB} = \frac{\overline{V}_{ab}}{Z_{AB}} \]
\[\overline{I}_{BC} = \frac{\overline{V}_{bc}}{Z_{BC}} \]
\[\overline{I}_{CA} = \frac{\overline{V}_{ca}}{Z_{CA}} \]

• 선전류와 상전류와의 관계

\[\overline{I}_{aA} = \overline{I}_{AB} - \overline{I}_{CA} \]
\[\overline{I}_{bB} = \overline{I}_{BC} - \overline{I}_{AB} \]
\[\overline{I}_{cC} = \overline{I}_{CA} - \overline{I}_{BC} \]
\[0 = \overline{I}_{aA} + \overline{I}_{bB} + \overline{I}_{cC} \]

⇒

\[\overline{I}_{aA} = \frac{\overline{V}_{ab}}{Z_{AB}} - \frac{\overline{V}_{bc}}{Z_{BC}} \]
\[\overline{I}_{bB} = \frac{\overline{V}_{bc}}{Z_{BC}} - \frac{\overline{V}_{ab}}{Z_{AB}} \]
\[\overline{I}_{cC} = \frac{\overline{V}_{ca}}{Z_{CA}} - \frac{\overline{V}_{bc}}{Z_{BC}} \]
대칭좌표법
(System of Symmetrical coordinate)

• 비대칭 n상 회로의 전압 또는 전류에 대해 n조의 대칭 전압 또는 대칭 전류로 분해하고, 이 분해된 전압 또는 전류에 대해서 계산하여 이것을 종합하여 결과를 얻는 방법.

⇒ 불평등 3상 회로에 응용

• 대칭 좌표법에서는 불평등 전압 또는 전류를 평형된 3 성분으로 분해하여 취급한다.
 • 영상분(zero sequence component) : 각 상이 모두 동상이며 크기도 동일하다.
 • 정상분(positive sequence component) : 상순이 a-b-c 인 대칭 3상
 • 역상분(negative sequence component) : 상순이 a-c-b 인 대칭 3상

![Diagram of symmetrical components](image)

영상분 정상분 역상분

⇒ 영상분, 정상분, 역상분이 이 3 성분을 각 상마다 정상분을 기준으로 벡터적으로 합성하면 비대칭 전압 또는 전류가 되며, 이 3 성분을 종합하여 대칭분이라고 한다.

Let

• 영상분 : $\overline{V}_{a0}, \overline{V}_{b0}, \overline{V}_{c0}$
• 정상분 : $\overline{V}_{a1}, \overline{V}_{b1}, \overline{V}_{c1}$
• 역상분 : $\overline{V}_{a2}, \overline{V}_{b2}, \overline{V}_{c2}$

• 불평등 3상 전압을 $\overline{V}_a, \overline{V}_b, \overline{V}_c$ 를 대칭분으로 다음과 같이 나타낼 수 있다.

\[
\overline{V}_a = \overline{V}_{a0} + \overline{V}_{a1} + \overline{V}_{a2} \\
\overline{V}_b = \overline{V}_{b0} + \overline{V}_{b1} + \overline{V}_{b2} \\
\overline{V}_c = \overline{V}_{c0} + \overline{V}_{c1} + \overline{V}_{c2}
\]

여기서

• 정상분 : $\overline{V}_{a1} = \overline{V}_{b1} = a \overline{V}_{a1}, \overline{V}_{c1} = a \overline{V}_{a1}$
• 역상분 : $\overline{V}_{a2} = \overline{V}_{b2} = a \overline{V}_{a2}, \overline{V}_{c2} = a^2 \overline{V}_{a2}$
따라서

\[\mathbf{V}_a = \mathbf{V}_{a0} + \mathbf{V}_{a1} + \mathbf{V}_{a2} \] \hspace{1cm} (1)

\[\mathbf{V}_b = \mathbf{V}_{a0} + a^2 \mathbf{V}_{a1} + a \mathbf{V}_{a2} \] \hspace{1cm} (2)

\[\mathbf{V}_c = \mathbf{V}_{a0} + a \mathbf{V}_{a1} + a^2 \mathbf{V}_{a2} \] \hspace{1cm} (3)

\[\Rightarrow \]

\[\begin{bmatrix} \mathbf{V}_a \\ \mathbf{V}_b \\ \mathbf{V}_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_{a0} \\ \mathbf{V}_{a1} \\ \mathbf{V}_{a2} \end{bmatrix} = [\mathbf{A}]^{-1} \begin{bmatrix} \mathbf{V}_a \\ \mathbf{V}_b \\ \mathbf{V}_c \end{bmatrix} \]

(Note) since \(1 + a + a^2 = 0 \)

• \(\mathbf{V}_{a0} = ? : \) 식(1) + 식(2) + 식(3)

\[\mathbf{V}_{a0} = \frac{1}{3} (\mathbf{V}_a + \mathbf{V}_b + \mathbf{V}_c) \]

• \(\mathbf{V}_{a1} = ? : \) 식(1) + \(a(\)식(2)) + \(a^2(\)식(3))

\[\mathbf{V}_a = \mathbf{V}_{a0} + \mathbf{V}_{a1} + \mathbf{V}_{a2} \]

\[a \mathbf{V}_b = a \mathbf{V}_{a0} + a^3 \mathbf{V}_{a1} + a^2 \mathbf{V}_{a2} = a \mathbf{V}_{a0} + \mathbf{V}_{a1} + a^2 \mathbf{V}_{a2} \]

\[a^2 \mathbf{V}_c = a^2 \mathbf{V}_{a0} + a^3 \mathbf{V}_{a1} + a^4 \mathbf{V}_{a2} = a^2 \mathbf{V}_{a0} + \mathbf{V}_{a1} + a \mathbf{V}_{a2} \]

\[\Rightarrow \]

\[\mathbf{V}_{a1} = \frac{1}{3} (\mathbf{V}_a + a \mathbf{V}_b + a^2 \mathbf{V}_c) \]

• \(\mathbf{V}_{a2} = ? : \) 식(1) + \(a^2(\)식(2)) + \(a(\)식(3))

\[\mathbf{V}_a = \mathbf{V}_{a0} + \mathbf{V}_{a1} + \mathbf{V}_{a2} \]

\[a^2 \mathbf{V}_b = a^2 \mathbf{V}_{a0} + a^4 \mathbf{V}_{a1} + a^3 \mathbf{V}_{a2} = a^2 \mathbf{V}_{a0} + a \mathbf{V}_{a1} + \mathbf{V}_{a2} \]

\[a \mathbf{V}_c = a \mathbf{V}_{a0} + a^2 \mathbf{V}_{a1} + a^3 \mathbf{V}_{a2} = a \mathbf{V}_{a0} + a^2 \mathbf{V}_{a1} + \mathbf{V}_{a2} \]

\[\Rightarrow \]

\[\mathbf{V}_{a2} = \frac{1}{3} (\mathbf{V}_a + a^2 \mathbf{V}_b + a \mathbf{V}_c) \]

따라서 다음과 같은 관계가 성립한다.

\[\begin{bmatrix} \mathbf{V}_{a0} \\ \mathbf{V}_{a1} \\ \mathbf{V}_{a2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_a \\ \mathbf{V}_b \\ \mathbf{V}_c \end{bmatrix} = [\mathbf{A}] \begin{bmatrix} \mathbf{V}_a \\ \mathbf{V}_b \\ \mathbf{V}_c \end{bmatrix} \]
여기서
\[
[A] = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix}, \quad [A]^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix}
\]

\[[A][A]^{-1} = 1 \]

• 일반적으로 \(a \) 상을 기준으로 다루는 경우가 대부분이므로
\[
\overline{V}_0, \overline{V}_1, \overline{V}_2 \text{를 } \overline{V}_0, \overline{V}_1, \overline{V}_2 \text{로 표시하는 경우가 대부분이다.}
\]

(Note) 불평형율(unbalanced factor)

불평형 3상 전압이나 전류에는 양상분과 역상분이 포함되는 경우가 일반적이므로 불평형의 정도를 나타내는 척도로 불평형율을 사용하며, 이 값은 양상분과 정상분의 크기 비 정의한다.

\[
\text{불평형율} = \frac{\text{역상분의 크기}}{\text{정상분의 크기}} \times 100 \quad [\%]
\]

[Ex] 평형3상 전압
평형 3상의 경우
\[
\overline{V}_b = a^2 \overline{V}_a, \quad \overline{V}_c = a \overline{V}_a
\]
가 되므로
\[
\begin{bmatrix} \overline{V}_0 \\ \overline{V}_1 \\ \overline{V}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} \overline{V}_a \\ \overline{V}_b \\ \overline{V}_c \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \overline{V}_a
\]

\[
= \frac{1}{3} \begin{bmatrix} \overline{V}_a + a^2 \overline{V}_a + a \overline{V}_a \\ \overline{V}_a + a^3 \overline{V}_a + a^3 \overline{V}_a \\ \overline{V}_a + a^4 \overline{V}_a + a^2 \overline{V}_a \end{bmatrix}
\]

여기서 \(a^3 = 1 \)
\[
\overline{V}_a + a^4 \overline{V}_a + a^2 \overline{V}_a = \overline{V}_a + a^2 (1 + a^2) \overline{V}_a \left|_{1+a^2=-a} \right. = \overline{V}_a - a^3 \overline{V}_a = 0
\]
가 되므로
$$\begin{bmatrix} \bar{V}_0 \\ \bar{V}_1 \\ \bar{V}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 0 \\ 3 \bar{V}_a \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \bar{V}_a \\ 0 \end{bmatrix}$$

둘형 3상 전압의 영상분 \(\bar{V}_0 \) 및 역상분 \(\bar{V}_2 \)는 0이 되므로 정상분만 남게되며,
a상의 정상분은 \(\bar{V}_a \)이다.

대칭 3상회로는 대칭 좌표법에서는 정상분만의 특별한 경우라 할 수 있다.

[Remark] 별형 3상 Y-Y 회로의 경우, 비접지식 회로에서 영상분은 0이 되며, 중심점 접지식 회로(3상 4선식)에서는 영상분이 나타난다.

(Proof) 3상 교류 \(\bar{I}_a, \bar{I}_b, \bar{I}_c \)가 호르고 있을 때, a상의 대칭분을 \(\bar{I}_0, \bar{I}_1, \bar{I}_2 \)라 하면

$$\begin{bmatrix} \bar{I}_0 \\ \bar{I}_1 \\ \bar{I}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} \bar{I}_a+\bar{I}_b+\bar{I}_c \\ \bar{I}_a+a \bar{I}_c a^2 \bar{I}_c \\ \bar{I}_a+a^2 \bar{I}_b+a \bar{I}_c \end{bmatrix}$$

(1) 비접지식

$$\begin{bmatrix} \bar{I}_0 \\ \bar{I}_1 \\ \bar{I}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 0 \\ \bar{I}_a+a \bar{I}_c a^2 \bar{I}_c \\ \bar{I}_a+a^2 \bar{I}_b+a \bar{I}_c \end{bmatrix}$$

\(\bar{I}_0=0 \)가 되어 영상분은 나타나지 않고 정상분과 역상분만이 나타난다.
(2) 중성점 접지 회로

일반적으로 \[\overline{I}_a + \overline{I}_b + \overline{I}_c \neq 0 \]가 되므로

\[
\begin{bmatrix}
\overline{I}_0 \\
\overline{I}_1 \\
\overline{I}_2
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
\overline{I}_a + \overline{I}_b + \overline{I}_c \\
\overline{I}_a + a \overline{I}_b + a^2 \overline{I}_c \\
\overline{I}_a + a^2 \overline{I}_b + a \overline{I}_c
\end{bmatrix}
\]

영상분, 정상분, 역상분 모두 다 존재한다.

• 접지식의 경우 중성점 접지선에는 정상분과 역상분의 전류는 흐르지 않고 영상분의 합인 3 \(\overline{I}_0 \) 만 흐르게 된다. 이러한 경우는 3상 4선식의 중성선에도 해당된다.

\[
\overline{I}_a = \overline{I}_0 + \overline{I}_1 + \overline{I}_2 \\
\overline{I}_b = \overline{I}_0 + a^2 \overline{I}_1 + a \overline{I}_2 \\
\overline{I}_c = \overline{I}_0 + a \overline{I}_1 + a^2 \overline{I}_2
\]

위 식을 합하게 되면

\[\overline{I}_a + \overline{I}_b + \overline{I}_c = 3 \overline{I}_0 \]

가 되어 중성선에는 3배의 영상분 전류가 흐르게 된다.
블평형 전원의 Y-대칭분$
ightarrow$$\triangle$-대칭분 변환

Let

Y-회로 전원 : V_a^Y, V_b^Y, V_c^Y
Y-회로 대칭분 : V_0^Y, V_1^Y, V_2^Y

\triangle-회로 전원 : $V_a^\triangle, V_b^\triangle, V_c^\triangle$
\triangle-회로 대칭분 : $V_0^\triangle, V_1^\triangle, V_2^\triangle$

* Y-회로의 대칭분

$$
\begin{bmatrix}
V_0^Y \\
V_1^Y \\
V_2^Y
\end{bmatrix} = \frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
V_a^Y \\
V_b^Y \\
V_c^Y
\end{bmatrix}
$$

* \triangle-회로의 전원

$$
\begin{bmatrix}
V_a^\triangle \\
V_b^\triangle \\
V_c^\triangle
\end{bmatrix} =
\begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
V_a^Y \\
V_b^Y \\
V_c^Y
\end{bmatrix}
$$

(note)

$$
\begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{bmatrix} = 0
$$

따라서 위 행렬에 대한 역행렬은 존재하지 않는다.

* \triangle-회로의 대칭분
\[
\begin{bmatrix}
V_0^\triangle
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
V_a^\triangle
\end{bmatrix}
\]
\[
= \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix} \begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
V_a^\nabla \\
V_b^\nabla \\
V_c^\nabla
\end{bmatrix}
\]
\[
= \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix} \begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
V_0^\nabla \\
V_1^\nabla \\
V_2^\nabla
\end{bmatrix}
\]
\[
= \begin{bmatrix}
0 & 0 & 0 \\
0 & 1-a^2 & 0 \\
0 & 0 & 1-a
\end{bmatrix}
\begin{bmatrix}
V_0^\nabla \\
V_1^\nabla \\
V_2^\nabla
\end{bmatrix}
\]

따라서
\[
\begin{align*}
V_0^\triangle &= 0 \\
V_1^\triangle &= (1-a^2)V_1^\nabla = \left(\sqrt{3} e^{i \frac{\pi}{6}} \right) V_1^\nabla \\
V_2^\triangle &= (1-a)V_2^\nabla = \left(\sqrt{3} e^{-i \frac{\pi}{6}} \right) V_2^\nabla
\end{align*}
\]

\[\Rightarrow\] 볼링형 Y-회로 전원의 대칭분을 \(\triangle\)-회로 전원의 대칭분으로 변환할 때,

- 양상분: \(V_0^\triangle = 0\)
- 정상분: \(V_1^\triangle\)는 \(V_1^\nabla\)보다 \(\sqrt{3}\)배 크며, 위상이 \(\frac{\pi}{6}\) 앞선다.
- 역상분: \(V_2^\triangle\)는 \(V_2^\nabla\)보다 \(\sqrt{3}\)배 크며, 위상이 \(\frac{\pi}{6}\) 뒤진다.
중성점 접지식 볼평형 Y-부하

• 중성점 N이 접지된 볼평형 Y-부하에 있어서 각 단자 a, b, c의 대지전압을 각각 \overline{V}_a, \overline{V}_b, \overline{V}_c라고 하며 선전류를 \overline{I}_a, \overline{I}_b, \overline{I}_c라 하자. 부하 Z_a, Z_b, Z_c에도 각각 대지전압 \overline{V}_a, \overline{V}_b, \overline{V}_c이 걸린다.

$$\Rightarrow \overline{V}_a = Z_a \overline{I}_a, \quad \overline{V}_b = Z_b \overline{I}_b, \quad \overline{V}_c = Z_c \overline{I}_c$$

즉,

$$\begin{bmatrix}
\overline{V}_a \\
\overline{V}_b \\
\overline{V}_c
\end{bmatrix} =
\begin{bmatrix}
Z_a & 0 & 0 \\
0 & Z_b & 0 \\
0 & 0 & Z_c
\end{bmatrix}
\begin{bmatrix}
\overline{I}_a \\
\overline{I}_b \\
\overline{I}_c
\end{bmatrix}$$

• Let

\overline{V}_a, \overline{V}_b, \overline{V}_c의 대칭분 : \overline{V}_0, \overline{V}_1, \overline{V}_2

\overline{I}_a, \overline{I}_b, \overline{I}_c의 대칭분 : \overline{I}_0, \overline{I}_1, \overline{I}_2

$$\begin{bmatrix}
\overline{V}_0 \\
\overline{V}_1 \\
\overline{V}_2
\end{bmatrix} = \frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
\overline{V}_a \\
\overline{V}_b \\
\overline{V}_c
\end{bmatrix}$$

$$= \frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
Z_a & 0 & 0 \\
0 & Z_b & 0 \\
0 & 0 & Z_c
\end{bmatrix}
\begin{bmatrix}
\overline{I}_a \\
\overline{I}_b \\
\overline{I}_c
\end{bmatrix}$$
\[
\begin{align*}
\frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
Z_a & 0 & 0 \\
0 & Z_b & 0 \\
0 & 0 & Z_c
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
\bar{I}_0 \\
\bar{I}_1 \\
\bar{I}_2
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\frac{1}{3}
\begin{bmatrix}
Z_a + Z_b + Z_c & Z_a + a^2 Z_b + a Z_c & Z_a + a Z_b + a^2 Z_c \\
Z_a + a Z_b + a^2 Z_c & Z_a + Z_b + Z_c & Z_a + a Z_b + a Z_c \\
Z_a + a^2 Z_b + a Z_c & Z_a + a Z_b + a^2 Z_c & Z_a + Z_b + Z_c
\end{bmatrix}
\begin{bmatrix}
\bar{I}_0 \\
\bar{I}_1 \\
\bar{I}_2
\end{bmatrix}
\end{align*}
\]

원소들인 \(Z_a + Z_b + Z_c, \ Z_a + a^2 Z_b + a Z_c, \ Z_a + a Z_b + a^2 Z_c \)의 형태이므로

\[
\begin{align*}
Z_0 & = \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix} Z_a \\
Z_1 & = \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix} Z_b = \frac{1}{3} \begin{bmatrix}
Z_a + Z_b + Z_c \\
Z_a + a Z_b + a^2 Z_c \\
Z_a + a^2 Z_b + a Z_c
\end{bmatrix}
\end{align*}
\]

\[\Rightarrow\]

\[
\begin{bmatrix}
\bar{V}_0 \\
\bar{V}_1 \\
\bar{V}_2
\end{bmatrix} = \begin{bmatrix}
Z_0 & Z_2 & Z_1 \\
Z_1 & Z_0 & Z_2 \\
Z_2 & Z_1 & Z_0
\end{bmatrix} \begin{bmatrix}
\bar{I}_0 \\
\bar{I}_1 \\
\bar{I}_2
\end{bmatrix}
\]

\[\Rightarrow\] 볼평행 임피던스 \(Z_a, Z_b, Z_c \)도 전압, 전류와 같이 대칭분인 \(Z_0, Z_1, Z_2 \)로 분해될 수 있다. (여기서 이 대칭분은 식을 간단히 표시한다는 것이지 물리적 의미는 존재하지 않는다.)

\[\Rightarrow\] 대칭분 \(\bar{V}_0, \bar{V}_1, \bar{V}_2 \)이 구해지면, \(\bar{V}_a, \bar{V}_b, \bar{V}_c \)을 구할 수 있다.

\[\text{[Remark]}\] 폼형3상 부하인 경우

폼형3상 부하인 경우 : \(Z_a = Z_b = Z_c \)

\[
\begin{align*}
\begin{bmatrix}
Z_0 \\
Z_1 \\
Z_2
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix} Z_a = \frac{1}{3} \begin{bmatrix}
Z_a + Z_b + Z_c \\
Z_a + a Z_b + a^2 Z_c \\
Z_a + a^2 Z_b + a Z_c
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
3Z_a = \frac{1}{3} \begin{bmatrix}
Z_a(1+a+a^2) \\
Z_a(1+a^2+a) \\
Z_a(1+a^2+a)
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
3Z_a \\
0 \\
0
\end{bmatrix} = Z_a
\end{align*}
\]
\[\begin{bmatrix} \bar{V}_0 \\ \bar{V}_1 \\ \bar{V}_2 \end{bmatrix} = \begin{bmatrix} Z_a & 0 & 0 \\ 0 & Z_a & 0 \\ 0 & 0 & Z_a \end{bmatrix} \begin{bmatrix} \bar{I}_0 \\ \bar{I}_1 \\ \bar{I}_2 \end{bmatrix} = \begin{bmatrix} Z_a \bar{I}_0 \\ Z_a \bar{I}_1 \\ Z_a \bar{I}_2 \end{bmatrix} = \begin{bmatrix} Z_0 \bar{I}_0 \\ Z_0 \bar{I}_1 \\ Z_0 \bar{I}_2 \end{bmatrix} \]

\[\bar{V}_0 = Z_0 \bar{I}_0, \quad \bar{V}_1 = Z_0 \bar{I}_1, \quad \bar{V}_2 = Z_0 \bar{I}_2 \]

[Remark] Admittance 표현

- 중성점 N이 접지된 불평형 Y-부하에 있어서 각 단자 a, b, c의 대지전압을 각각 \(\bar{V}_a, \bar{V}_b, \bar{V}_c \)라하고 선전류를 \(\bar{I}_a, \bar{I}_b, \bar{I}_c \)라 하자.

\[Y_a = \frac{1}{Z_a}, \quad Y_b = \frac{1}{Z_b}, \quad Y_c = \frac{1}{Z_c} \]

\[\bar{I}_a = Y_a \bar{V}_a, \quad \bar{I}_b = Y_b \bar{V}_b, \quad \bar{I}_c = Y_c \bar{V}_c \]

즉,

\[\begin{bmatrix} \bar{I}_a \\ \bar{I}_b \\ \bar{I}_c \end{bmatrix} = \begin{bmatrix} Y_a & 0 & 0 \\ 0 & Y_b & 0 \\ 0 & 0 & Y_c \end{bmatrix} \begin{bmatrix} \bar{V}_a \\ \bar{V}_b \\ \bar{V}_c \end{bmatrix} \]

- Let

\(\bar{V}_a, \bar{V}_b, \bar{V}_c \)의 대칭분 : \(\bar{V}_0, \bar{V}_1, \bar{V}_2 \)

\(\bar{I}_a, \bar{I}_b, \bar{I}_c \)의 대칭분 : \(\bar{I}_0, \bar{I}_1, \bar{I}_2 \)

\[\begin{bmatrix} \bar{I}_0 \\ \bar{I}_1 \\ \bar{I}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} \bar{I}_a \\ \bar{I}_b \\ \bar{I}_c \end{bmatrix} \]

\[= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} Y_a & 0 & 0 \\ 0 & Y_b & 0 \\ 0 & 0 & Y_c \end{bmatrix} \begin{bmatrix} \bar{V}_a \\ \bar{V}_b \\ \bar{V}_c \end{bmatrix} \]
\[
\begin{bmatrix}
1 & 1 & 1 & Y_a & 0 & 0 & 1 & 1 & 1 & \bar{V}_0 \\
1 & a & a^2 & 0 & Y_b & 0 & 1 & a^2 & a & \bar{V}_1 \\
a^2 & a & 0 & 0 & Y_c & 1 & a & a^2 & \bar{V}_2 \\
\end{bmatrix}
\]

\[
= \frac{1}{3}
\begin{bmatrix}
Y_a + Y_b + Y_c & Y_a + a^2 Y_b + a Y_c & Y_a + a Y_b + a^2 Y_c \\
Y_a + a Y_b + a^2 Y_c & Y_a + Y_b + Y_c & Y_a + a^2 Y_b + a Y_c \\
Y_a + a^2 Y_b + a Y_c & Y_a + a Y_b + a^2 Y_c & Y_a + Y_b + Y_c
\end{bmatrix}
\begin{bmatrix}
\bar{V}_0 \\
\bar{V}_1 \\
\bar{V}_2 \\
\end{bmatrix}
\]

원소들이 \(Y_a + Y_b + Y_c, Y_a + a^2 Y_b + a Y_c, Y_a + a Y_b + a^2 Y_c \)의 형태이므로

\[
\begin{bmatrix}
Y_0 \\
Y_1 \\
Y_2
\end{bmatrix} = \frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
a & a^2 & 0 \\
a^2 & a & 0
\end{bmatrix}
\begin{bmatrix}
Y_a \\
Y_b \\
Y_c
\end{bmatrix} = \frac{1}{3}
\begin{bmatrix}
Y_a + Y_b + Y_c \\
Y_a + a Y_b + a^2 Y_c \\
Y_a + a^2 Y_b + a Y_c
\end{bmatrix}
\]

\[
\Rightarrow
\begin{bmatrix}
\bar{I}_0 \\
\bar{I}_1 \\
\bar{I}_2
\end{bmatrix} = \begin{bmatrix}
Y_0 & Y_1 & Y_2 \\
Y_1 & Y_0 & Y_2 \\
Y_2 & Y_1 & Y_0
\end{bmatrix}
\begin{bmatrix}
\bar{V}_0 \\
\bar{V}_1 \\
\bar{V}_2
\end{bmatrix}
\]

\(\Rightarrow \) 분쟁형 임피턴스 \(Y_a, Y_b, Y_c \) 도 전압, 전류와 같이 대칭분인 \(Y_0, Y_1, Y_2 \)로 분해될 수 있다. (여기서 이 대칭분은 식을 간단히 표시한다는 것이지 물리적 의미는 존재하지 않는다.)

\(\Rightarrow \) 대칭분 \(\bar{I}_0, \bar{I}_1, \bar{I}_2 \)이 구해지면, \(\bar{I}_a, \bar{I}_b, \bar{I}_c \)를 구할 수 있다.
중성점 비점지식 불평형 Y-부하

- 중성점 N이 비점지된 불평형 Y-부하에 있어서 각 단자 a, b, c의 대지전압을 각각 \(\overline{V}_a, \overline{V}_b, \overline{V}_c \)라 하고 선전류를 \(\overline{I}_a, \overline{I}_b, \overline{I}_c \)라 하자.

\[
\Rightarrow
\]
부하 \(Z_a, Z_b, Z_c \)의 중성점은 비점지로 불평형 부하이며므로 중성점 N은 임의의 전압 \(V_N \)을 갖게된다. 이때 부하 \(Z_a, Z_b, Z_c \)에 걸리는 전압 \(V^p_a, V^p_b, V^p_c \)는 다음과 같다.

\[
V^p_a = V_a - V_N = Z_a I_a \\
V^p_b = V_b - V_N = Z_b I_b \\
V^p_c = V_c - V_N = Z_c I_c
\]

- 중성점 비점지식에서는 \(I_a + I_b + I_c = 0 \)이다.
따라서 영상분 \(I_0 = 0 \)이다.

- 상전압 대칭분

\[
\begin{bmatrix}
V^p_0 \\
V^p_1 \\
V^p_2
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix} \begin{bmatrix}
V^p_a \\
V^p_b \\
V^p_c
\end{bmatrix}
\]

\[
= \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix} \begin{bmatrix}
V_a - V_N \\
V_b - V_N \\
V_c - V_N
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
V_a + V_b + V_c - 3V_N \\
V_a + aV_b + a^2V_c - (1 + a + a^2)V_N \\
V_a + a^2V_b + aV_c - (1 + a^2 + a)V_N
\end{bmatrix}
\]
\[
\begin{align*}
\mathbf{V}_0 + \mathbf{V}_b + \mathbf{V}_c - 3 \mathbf{V}_N &= \frac{1}{3} \begin{bmatrix} V_a + a V_b + a^2 V_c \\ V_a + a V_b + a^2 V_c \\ V_a + a^2 V_b + a V_c \end{bmatrix} = \frac{1}{3} \begin{bmatrix} V_0 - V_N \\ V_1 \\ V_2 \end{bmatrix} \\
\end{align*}
\]

(\textit{note}) 대지전압의 대칭분

\[
\begin{align*}
\begin{bmatrix} V_0 \\ V_1 \\ V_2 \end{bmatrix} &= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \frac{1}{3} \begin{bmatrix} V_a + V_b + V_c \\ V_a + a V_b + a^2 V_c \\ V_a + a^2 V_b + a V_c \end{bmatrix}
\end{align*}
\]

* 부하 임피던스 전압의 대칭분을 선전류 대칭분으로 나타내면 다음과 같다.

\[
\begin{align*}
\begin{bmatrix} V^p_0 \\ V^p_1 \\ V^p_2 \end{bmatrix} &= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} V^p_a \\ V^p_b \\ V^p_c \end{bmatrix}
\end{align*}
\]

여기서

\[
\begin{align*}
\begin{bmatrix} V^p_a \\ V^p_b \\ V^p_c \end{bmatrix} &= \begin{bmatrix} Z_a & 0 & 0 \\ 0 & Z_b & 0 \\ 0 & 0 & Z_c \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}
\end{align*}
\]

가 되므로

\[
\begin{align*}
\begin{bmatrix} V^p_0 \\ V^p_1 \\ V^p_2 \end{bmatrix} &= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} Z_a & 0 & 0 \\ 0 & Z_b & 0 \\ 0 & 0 & Z_c \end{bmatrix} \begin{bmatrix} I_0 \\ I_1 \\ I_2 \end{bmatrix}
\end{align*}
\]

위 식을 정리하여 \(Z_0 = Z_a + Z_b + Z_c \), \(Z_1 = Z_a + a^2 Z_b + a Z_c \), \(Z_2 = Z_a + a Z_b + a^2 Z_c \)를 대입하면 다음과 같은 식을 얻는다.

\[
\begin{align*}
\begin{bmatrix} V^p_0 \\ V^p_1 \\ V^p_2 \end{bmatrix} &= \begin{bmatrix} Z_0 & Z_2 & Z_1 \\ Z_1 & Z_0 & Z_2 \\ Z_2 & Z_1 & Z_0 \end{bmatrix} \begin{bmatrix} I_0 \\ I_1 \\ I_2 \end{bmatrix}
\end{align*}
\]
여기서 영상분 \(I_0 = 0 \)이므로

\[
\begin{bmatrix}
V_0^0 \\
V_1^0 \\
V_2^0
\end{bmatrix} =
\begin{bmatrix}
Z_2 & Z_1 \\
Z_0 & Z_2 \\
Z_1 & Z_0
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
\] (2)

식 (1)과 식 (2)는 동가관계이므로

\[
\begin{bmatrix}
Z_2 & Z_1 \\
Z_0 & Z_2 \\
Z_1 & Z_0
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix} =
\begin{bmatrix}
V_0 - V_N \\
V_1 \\
V_2
\end{bmatrix}
\]

\[\Rightarrow Z_2 I_1 + Z_1 I_2 = V_0 - V_N \]
\[Z_0 I_1 + Z_2 I_2 = V_1 \]
\[Z_1 I_1 + Z_0 I_2 = V_2 \]

위 식은 풀면

\[
\begin{align*}
I_1 &= \frac{Z_0 V_1 - Z_2 V_2}{Z_0^2 - Z_1 Z_2} \\
I_2 &= \frac{Z_0 V_2 - Z_1 V_1}{Z_0^2 - Z_1 Z_2}
\end{align*}
\] (3)

\[
V_N = \frac{(Z_0^2 - Z_1 Z_2) V_0 + (Z_1^2 - Z_2 Z_0) V_1 + (Z_2^2 - Z_0 Z_1) V_2}{Z_0^2 - Z_1 Z_2}
\]

\[\Rightarrow I_1, I_2 \text{의 값이 구해지면 } I_0 = 0 \text{이므로 식 (3)에 의해서 } I_a, I_b, I_c \text{를 구할 수 있다.}\]